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CLUSTERED RAID DATA ORGANIZATION

BACKGROUND

1. Technical Field

The present disclosure relates to clustered storage systems
and, more specifically, to an organization of data and parity
information in one or more Redundant Array of Independent
Disks (RAID) groups within a clustered storage system.

2. Background Information

A storage system typically includes one or more storage
devices, such as solid state drives (SSDs) embodied as flash
storage devices, into which information may be entered, and
from which the information may be obtained, as desired. The
storage system may organize the storage devices into one or
more Redundant Array of Independent Disks (RAID)
groups, each having storage space on the devices dedicated
to storing data and parity (i.e., redundant) information. The
storage system may further implement a high-level module,
such as a file system, to logically organize the information
stored on the devices as storage containers such as, inter alia,
files or logical units (LUNs). Typically, a storage container
may be housed (stored) within a RAID group to reduce the
parity overhead and enable efficient allocation of parity
storage in the group.

For example, assume three storage containers are formed
from a set of 24 SSDs. The SSDs are then divided into three
RAID groups of 8 SSDs, i.e., one for each of the three
storage containers. If double parity protection is employed
for each RAID group (i.e., a 6+2 RAID configuration), then
the equivalent storage space of at least two SSDs from each
RAID group is dedicated to storing parity (i.e., redundancy)
information resulting in a parity ratio of 2/8 (=25%). This is
inefficient as compared to using a single RAID group to
store all three containers, which results in a parity ratio of
2/24 (=8.3%) for a 2242 RAID configuration.

Such inefficient allocation of parity storage for RAID
groups may arise in a clustered storage system (cluster)
having, e.g., a high availability (i.e., failover) arrangement
configured to service a number of storage containers. When
a node (i.e., storage system) of the cluster fails, the failed
node’s storage containers may be distributed to the remain-
ing (i.e., surviving) nodes, which takeover servicing of those
containers. However, this arrangement usually requires
additional RAID groups, i.e., at least one RAID group for
each storage container originally serviced by the failed node,
because each container may be owned (i.e., serviced) by
only one node at a time. Accordingly, each storage container
may be stored in a RAID group, so that the container may
be distributed to another (i.e., surviving) node in the event
of a node failure.

As a further example, assume a 4-node cluster arrange-
ment having 24 SSDs, where each node serves three storage
containers (i.e., 12 containers in the cluster) and one node
fails resulting in three surviving nodes. The three storage
containers from the failed node may then be distributed to
the surviving nodes, i.e., one container from the failed node
to each of the three surviving nodes. Since each storage
container is stored in a RAID group, this arrangement
requires that the storage containers be divided among 12
separate RAID groups. Therefore, the 24 SSDs are divided
into 12 RAID groups, e.g., two SSDs per RAID group in a
141 RAID configuration (i.e., mirror) having a 1/2 (=50%)
parity ratio. Moreover, if double parity is desired (e.g., at a
minimum three SSDs per RAID group in a 1+2 RAID
configuration), then at least 36 SSDs are needed (3x12) to

10
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2

house the 12 storage containers, resulting in a substantially
high, 2/3 (=67%) parity ratio.

Accordingly, there is a need to organize RAID groups and
storage containers of a cluster, so as to reduce the parity
overhead of the RAID groups, as well as to facilitate
distribution and service of the containers among surviving
nodes when one or more nodes of the cluster fail.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the embodiments
herein may be better understood by referring to the follow-
ing description in conjunction with the accompanying draw-
ings in which like reference numerals indicate identically or
functionally similar elements, of which:

FIG. 1 is a block diagram of a plurality of nodes inter-
connected as a cluster;

FIG. 2 is a block diagram of a node;

FIG. 3 is a block diagram of a storage input/output (I/O)
stack of the node;

FIG. 4 illustrates a write path of the storage 1/O stack;

FIG. 5 illustrates a read path of the storage 1/O stack;

FIG. 6 illustrates segment cleaning by a layered file
system of the storage I/O stack;

FIG. 7a illustrates a RAID stripe formed by the layered
file system;

FIG. 74 illustrates changes to a segment-based RAID data
organization in accordance with changes to a storage pool of
the cluster;

FIG. 7¢ illustrates RAID group slices;

FIG. 8a illustrates a RAID configuration topology tree
structure;

FIG. 8b illustrates data structures for a disk label and a
RAID header;

FIG. 8¢ is an example simplified procedure for lost write
detection;

FIG. 9 illustrates a failover of extent store instances;

FIG. 10a illustrates a failover distribution of extent store
instances in a three-node cluster; and

FIG. 104 illustrates a failover distribution of extent store
instances in a four-node cluster.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The embodiments described herein are directed to a
Redundant Array of Independent Disks (RAID) organization
of storage containers and RAID groups of a clustered
storage system (cluster) configured to reduce parity over-
head of the RAID groups, as well as facilitate distribution
and servicing of the storage containers among storage sys-
tems (nodes) of the cluster. The storage containers may be
stored on one or more storage arrays of storage devices, such
as solid state drives (SSDs), connected to the nodes of the
cluster. The RAID organization may be configured to iden-
tify the SSDs, which may be organized as one or more RAID
groups associated with an extent store. Notably, the RAID
groups may be formed from slices (i.e., portions) of storage
spaces of the SSDs instead of the entire storage spaces of the
SSDs. That is, each RAID group may be formed “horizon-
tally” across a set of SSDs as slices (i.e., one slice of storage
space from each SSD in the set). Accordingly, a plurality of
RAID groups may co-exist (i.e., be stacked) on the same set
of' SSDs, such that each RAID group allotted from the set of
SSDs may have a similar parity ratio.

In an embodiment, each extent store includes segments
horizontally spanning a RAID group, wherein each segment
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represents a unit of redundancy within the RAID group. That
is, parity and data may be arranged on a segment-by-
segment basis according to the RAID configuration of the
segment supported by the underlying RAID group. Each
segment within the same RAID group may thus have
different parity distribution and/or amount of parity over-
head. For example, one segment may use a slice on a first
SSD for parity, whereas another segment may use a slice on
a second SSD for parity. In addition, one segment may use
single parity protection (e.g., RAID 5) and another segment
may use double parity protection (e.g., RAID 6). It should be
noted that each segment may be associated with a separate
(or the same) RAID group, and that each extent store may
be associated with a plurality of RAID groups.

In an embodiment, the SSDs may be configured with
multi-host access (i.e., multi-stream) capability to thereby
enable more than one extent store to coexist on the same set
of SSDs. That is, the multi-stream capability of the SSDs
may allow an extent store on a first RAID group to be
efficiently serviced by one node, while another extent store
on a second RAID group may be serviced by another node.
Thus, different nodes may access different RAID groups on
the same SSD as if they were independent. In this manner,
extent stores may share SSDs, but those extent stores may be
serviced by different nodes of the cluster. Accordingly, a set
of SSDs of the storage array may include a plurality of
extent stores, each having a plurality of segments and
wherein each segment may be stored on a different RAID
group formed from slices across the set of the SSDs.

In an embodiment, write operations resulting in incom-
plete or corrupt data stored to media of an SSD (i.e., lost
write) may be detected by comparing a generation identifier
of a segment having the lost write data with an identifier in
a RAID header associated with the lost write data. A lost
write may be detected when the comparison of the identifiers
results in a mismatch.

In response to failure of a node, servicing (i.e., ownership)
of the failed node’s extent stores may be distributed to
remaining (i.e., surviving) nodes of the cluster, wherein an
extent store instance is the unit of failover. In an embodi-
ment, servicing of the failed node’s extent stores may be
distributed evenly (i.e., load balanced) to the surviving
nodes. Thus, for a cluster of N nodes, extent stores may be
evenly distributed among N-1 surviving nodes, wherein
each node may have a multiple of N-1, i.e., m-(N-1), extent
stores so that m extent stores may be distributed to each of
the N-1 surviving nodes.

Description

Storage Cluster

FIG. 1 is a block diagram of a plurality of nodes 200
interconnected as a cluster 100 and configured to provide
storage service relating to the organization of information on
storage devices. The nodes 200 may be interconnected by a
cluster interconnect fabric 110 and include functional com-
ponents that cooperate to provide a distributed storage
architecture of the cluster 100, which may be deployed in a
storage area network (SAN). As described herein, the com-
ponents of each node 200 include hardware and software
functionality that enable the node to connect to one or more
hosts 120 over a computer network 130, as well as to one or
more storage arrays 150 of storage devices over a storage
interconnect 140, to thereby render the storage service in
accordance with the distributed storage architecture.

Each host 120 may be embodied as a general-purpose
computer configured to interact with any node 200 in
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accordance with a client/server model of information deliv-
ery. That is, the client (host) may request the services of the
node, and the node may return the results of the services
requested by the host, by exchanging packets over the
network 130. The host may issue packets including file-
based access protocols, such as the Network File System
(NFS) protocol over the Transmission Control Protocol/
Internet Protocol (TCP/IP), when accessing information on
the node in the form of storage containers such as files and
directories. However, in an embodiment, the host 120 illus-
tratively issues packets including block-based access proto-
cols, such as the Small Computer Systems Interface (SCSI)
protocol encapsulated over TCP (iSCSI) and SCSI encap-
sulated over FC (FCP), when accessing information in the
form of storage containers such as logical units (LUNs).
Notably, any of the nodes 200 may service a request directed
to a storage container stored on the cluster 100.

FIG. 2 is a block diagram of a node 200 that is illustra-
tively embodied as a storage system having one or more
central processing units (CPUs) 210 coupled to a memory
220 via a memory bus 215. The CPU 210 is also coupled to
a network adapter 230, storage controllers 240, a cluster
interconnect interface 250, and a non-volatile random access
memory (NVRAM 280) via a system interconnect 270. The
network adapter 230 may include one or more ports adapted
to couple the node 200 to the host(s) 120 over computer
network 130, which may include point-to-point links, wide
area networks, virtual private networks implemented over a
public network (Internet) or a local area network. The
network adapter 230 thus includes the mechanical, electrical
and signaling circuitry needed to connect the node to the
network 130, which illustratively embodies an Ethernet or
Fibre Channel (FC) network.

The memory 220 may include memory locations that are
addressable by the CPU 210 for storing software programs
and data structures associated with the embodiments
described herein. The CPU 210 may, in turn, include pro-
cessing elements and/or logic circuitry configured to execute
the software programs, such as a storage input/output (I/O)
stack 300, and manipulate the data structures. Illustratively,
the storage 1/O stack 300 may be implemented as a set of
user mode processes that may be decomposed into a plu-
rality of threads. An operating system kernel 224, portions of
which are typically resident in memory 220 (in-core) and
executed by the processing elements (i.e., CPU 210), func-
tionally organizes the node by, inter alia, invoking opera-
tions in support of the storage service implemented by the
node and, in particular, the storage 1/O stack 300. A suitable
operating system kernel 224 may include a general-purpose
operating system, such as the UNIX® series or Microsoft
Windows® series of operating systems, or an operating
system with configurable functionality such as microkernels
and embedded kernels. However, in an embodiment
described herein, the operating system kernel is illustratively
the Linux® operating system. It will be apparent to those
skilled in the art that other processing and memory means,
including various computer readable media, may be used to
store and execute program instructions pertaining to the
embodiments herein.

Each storage controller 240 cooperates with the storage
1/0 stack 300 executing on the node 200 to access informa-
tion requested by the host 120. The information is preferably
stored on storage devices such as solid state drives (SSDs)
260, illustratively embodied as flash storage devices, of
storage array 150. In an embodiment, the flash storage
devices may be based on NAND flash components, e.g.,
single-layer-cell (SLC) flash, multi-layer-cell (MLC) flash
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or triple-layer-cell (TL.C) flash, although it will be under-
stood to those skilled in the art that other non-volatile,
solid-state electronic devices (e.g., drives based on storage
class memory components) may be advantageously used
with the embodiments described herein. Accordingly, the
storage devices may or may not be block-oriented (i.e.,
accessed as blocks). The storage controller 240 includes one
or more ports having 1/O interface circuitry that couples to
the SSDs 260 over the storage interconnect 140, illustra-
tively embodied as a serial attached SCSI (SAS) topology.
Alternatively, other point-to-point I/O interconnect arrange-
ments, such as a conventional serial ATA (SATA) topology
or a PCI topology, may be used. The system interconnect
270 may also couple the node 200 to a local service storage
device 248, such as an SSD, configured to locally store
cluster-related configuration information, e.g., as cluster
database (DB) 244, which may be replicated to the other
nodes 200 in the cluster 100.

The cluster interconnect interface 250 may include one or
more ports adapted to couple the node 200 to the other
node(s) of the cluster 100. In an embodiment, Ethernet may
be used as the clustering protocol and interconnect fabric
media, although it will be apparent to those skilled in the art
that other types of protocols and interconnects, such as
Infiniband, may be utilized within the embodiments
described herein. The NVRAM 280 may include a back-up
battery or other built-in last-state retention capability (e.g.,
non-volatile semiconductor memory such as storage class
memory) that is capable of maintaining data in light of a
failure to the node and cluster environment. [llustratively, a
portion of the NVRAM 280 may be configured as one or
more non-volatile logs (NVLogs 285) configured to tempo-
rarily record (“log”) I/O requests, such as write requests,
received from the host 120.

Storage 1/0O Stack

FIG. 3 is a block diagram of the storage I/O stack 300 that
may be advantageously used with one or more embodiments
described herein. The storage 1/O stack 300 includes a
plurality of software modules or layers that cooperate with
other functional components of the nodes 200 to provide the
distributed storage architecture of the cluster 100. In an
embodiment, the distributed storage architecture presents an
abstraction of a single storage container, i.e., all of the
storage arrays 150 of the nodes 200 for the entire cluster 100
organized as one large pool of storage. In other words, the
architecture consolidates storage, i.e., the SSDs 260 of the
arrays 150, throughout the cluster (retrievable via cluster-
wide keys) to enable storage of the LUNs. Both storage
capacity and performance may then be subsequently scaled
by adding nodes 200 to the cluster 100.

Tlustratively, the storage I/O stack 300 includes an admin-
istration layer 310, a protocol layer 320, a persistence layer
330, a volume layer 340, an extent store layer 350, a
Redundant Array of Independent Disks (RAID) layer 360, a
storage layer 365 and a NVRAM (storing NVLogs) “layer”
interconnected with a messaging kernel 370. The messaging
kernel 370 may provide a message-based (or event-based)
scheduling model (e.g., asynchronous scheduling) that
employs messages as fundamental units of work exchanged
(i.e., passed) among the layers. Suitable message-passing
mechanisms provided by the messaging kernel to transfer
information between the layers of the storage I/O stack 300
may include, e.g., for intra-node communication: i) mes-
sages that execute on a pool of threads, ii) messages that
execute on a single thread progressing as an operation
through the storage 1/O stack, iii) messages using an Inter
Process Communication (IPC) mechanism, and, e.g., for
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inter-node communication: messages using a Remote Pro-
cedure Call (RPC) mechanism in accordance with a function
shipping implementation. Alternatively, the I/O stack may
be implemented using a thread-based or stack-based execu-
tion model. In one or more embodiments, the messaging
kernel 370 allocates processing resources from the operating
system kernel 224 to execute the messages. Each storage /0
stack layer may be implemented as one or more instances
(i.e., processes) executing one or more threads (e.g., in
kernel or user space) that process the messages passed
between the layers such that the messages provide synchro-
nization for blocking and non-blocking operation of the
layers.

In an embodiment, the protocol layer 320 may commu-
nicate with the host 120 over the network 130 by exchanging
discrete frames or packets configured as 1/O requests accord-
ing to pre-defined protocols, such as iSCSI and FCP. An /O
request, e.g., a read or write request, may be directed to a
LUN and may include I/O parameters such as, inter alia, a
LUN identifier (ID), a logical block address (LBA) of the
LUN, a length (i.e., amount of data) and, in the case of a
write request, write data. The protocol layer 320 receives the
1/O request and forwards it to the persistence layer 330,
which records the request into a persistent write-back cache
380 illustratively embodied as a log whose contents can be
replaced randomly, e.g., under some random access replace-
ment policy rather than only in serial fashion, and returns an
acknowledgement to the host 120 via the protocol layer 320.
In an embodiment only I/O requests that modify the LUN,
e.g., write requests, are logged. Notably, the [/O request may
be logged at the node receiving the I/O request, or in an
alternative embodiment in accordance with the function
shipping implementation, the I/O request may be logged at
another node.

Tustratively, dedicated logs may be maintained by the
various layers of the storage 1/O stack 300. For example, a
dedicated log 335 may be maintained by the persistence
layer 330 to record the I/O parameters of an 1/O request as
equivalent internal, i.e., storage 1/O stack, parameters, e.g.,
volume ID, offset, and length. In the case of a write request,
the persistence layer 330 may also cooperate with the
NVRAM 280 to implement the write-back cache 380 con-
figured to store the write data associated with the write
request. In an embodiment, the write-back cache may be
structured as a log. Notably, the write data for the write
request may be physically stored in the cache 380 such that
the log 335 contains the reference to the associated write
data. It will be understood to persons skilled in the art that
other variations of data structures may be used to store or
maintain the write data in NVRAM including data structures
with no logs. In an embodiment, a copy of the write-back
cache may be also maintained in the memory 220 to facili-
tate direct memory access to the storage controllers. In other
embodiments, caching may be performed at the host 120 or
at a receiving node in accordance with a protocol that
maintains coherency between the data stored at the cache
and the cluster.

In an embodiment, the administration layer 310 may
apportion the LUN into multiple volumes, each of which
may be partitioned into multiple regions (e.g., allotted as
disjoint block address ranges), with each region having one
or more segments stored as multiple stripes on the array 150.
A plurality of volumes distributed among the nodes 200 may
thus service a single LUN, i.e., each volume within the LUN
services a different LBA range (i.e., offset range and length,
hereinafter offset range) or set of ranges within the LUN.
Accordingly, the protocol layer 320 may implement a vol-
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ume mapping technique to identify a volume to which the
1/0O request is directed (i.e., the volume servicing the offset
range indicated by the parameters of the I/O request).
Iustratively, the cluster database 244 may be configured to
maintain one or more associations (e.g., key-value pairs) for
each of the multiple volumes, e.g., an association between
the LUN ID and a volume, as well as an association between
the volume and a node ID for a node managing the volume.
The administration layer 310 may also cooperate with the
database 244 to create (or delete) one or more volumes
associated with the LUN (e.g., creating a volume ID/LUN
key-value pair in the database 244). Using the LUN ID and
LBA (or LBA range), the volume mapping technique may
provide a volume ID (e.g., using appropriate associations in
the cluster database 244) that identifies the volume and node
servicing the volume destined for the request as well as
translate the LBA (or LBA range) into an offset and length
within the volume. Specifically, the volume ID is used to
determine a volume layer instance that manages volume
metadata associated with the LBA or LBA range. As noted,
the protocol layer 320 may pass the [/O request (i.e., volume
1D, offset and length) to the persistence layer 330, which
may use the function shipping (e.g., inter-node) implemen-
tation to forward the I/O request to the appropriate volume
layer instance executing on a node in the cluster based on the
volume ID.

In an embodiment, the volume layer 340 may manage the
volume metadata by, e.g., maintaining states of host-visible
containers, such as ranges of LUNs, and performing data
management functions, such as creation of snapshots and
clones, for the LUNSs in cooperation with the administration
layer 310. The volume metadata is illustratively embodied as
in-core mappings from LUN addresses (i.e., offsets) to
durable extent keys, which are unique cluster-wide IDs
associated with SSD storage locations for extents within an
extent key space of the cluster-wide storage container. That
is, an extent key may be used to retrieve the data of the
extent at an SSD storage location associated with the extent
key. Alternatively, there may be multiple storage containers
in the cluster wherein each container has its own extent key
space, e.g., where the administration layer 310 provides
distribution of extents among the storage containers. An
extent is a variable length block of data that provides a unit
of storage on the SSDs and that need not be aligned on any
specific boundary, i.e., it may be byte aligned. Accordingly,
an extent may be an aggregation of write data from a
plurality of write requests to maintain such alignment.
Iustratively, the volume layer 340 may record the for-
warded request (e.g., information or parameters character-
izing the request), as well as changes to the volume meta-
data, in dedicated log 345 maintained by the volume layer
340. Subsequently, the contents of the volume layer log 345
may be written to the storage array 150 in accordance with
a checkpoint (e.g., synchronization) operation that stores
in-core metadata on the array 150. That is, the checkpoint
operation (checkpoint) ensures that a consistent state of
metadata, as processed in-core, is committed to (i.e., stored
on) the storage array 150; whereas retirement of log entries
ensures that the entries accumulated in the volume layer log
345 synchronize with the metadata checkpoints committed
to the storage array 150 by, e.g., retiring those accumulated
log entries prior to the checkpoint. In one or more embodi-
ments, the checkpoint and retirement of log entries may be
data driven, periodic or both.

In an embodiment, the extent store layer 350 is respon-
sible for storing extents on the SSDs 260 (i.e., on the storage
array 150) and for providing the extent keys to the volume
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layer 340 (e.g., in response to a forwarded write request).
The extent store layer 350 is also responsible for retrieving
data (e.g., an existing extent) using an extent key (e.g., in
response to a forwarded read request). The extent store layer
350 may be responsible for performing de-duplication and
compression on the extents prior to storage. The extent store
layer 350 may maintain in-core mappings (e.g., embodied as
hash tables) of extent keys to SSD storage locations (e.g.,
offset on an SSD 260 of array 150). The extent store layer
350 may also maintain a dedicated log 355 of entries that
accumulate requested “put” and “delete” operations (i.e.,
write requests and delete requests for extents issued from
other layers to the extent store layer 350), where these
operations change the in-core mappings (i.e., hash table
entries). Subsequently, the in-core mappings and contents of
the extent store layer log 355 may be written to the storage
array 150 in accordance with a “fuzzy” checkpoint 390 (i.e.,
checkpoint with incremental changes recorded in one or
more log files) in which selected in-core mappings (less than
the total), are committed to the array 150 at various intervals
(e.g., driven by an amount of change to the in-core map-
pings, size thresholds of log 355, or periodically). Notably,
the accumulated entries in log 355 may be retired once all
in-core mappings have been committed to include the
changes recorded in those entries.

In an embodiment, the RAID layer 360 may organize the
SSDs 260 within the storage array 150 as one or more RAID
groups (e.g., sets of SSDs) that enhance the reliability and
integrity of extent storage on the array by writing data
“stripes” having redundant information, i.e., appropriate
parity information with respect to the striped data, across a
given number of SSDs 260 of each RAID group. The RAID
layer 360 may also store a number of stripes (e.g., stripes of
sufficient depth), e.g., in accordance with a plurality of
contiguous range write operations, so as to reduce data
relocation (i.e., internal flash block management) that may
occur within the SSDs as a result of the operations. In an
embodiment, the storage layer 365 implements storage 1/O
drivers that may communicate directly with hardware (e.g.,
the storage controllers and cluster interface) cooperating
with the operating system kernel 224, such as a Linux virtual
function I/O (VFIO) driver.

Write Path

FIG. 4 illustrates an /O (e.g., write) path 400 of the
storage 1/0 stack 300 for processing an /O request, e.g., a
SCSI write request 410. The write request 410 may be issued
by host 120 and directed to a LUN stored on the storage
arrays 150 of the cluster 100. Illustratively, the protocol
layer 320 receives and processes the write request by
decoding 420 (e.g., parsing and extracting) fields of the
request, e.g., LUN ID, LBA and length (shown at 413), as
well as write data 414. The protocol layer 320 may use the
results 422 from decoding 420 for a volume mapping
technique 430 (described above) that translates the LUN ID
and LBA range (i.e., equivalent offset and length) of the
write request to an appropriate volume layer instance, i.e.,
volume ID (volume 445), in the cluster 100 that is respon-
sible for managing volume metadata for the LBA range. In
an alternative embodiment, the persistence layer 330 may
implement the above described volume mapping technique
430. The protocol layer then passes the results 432, e.g.,
volume ID, offset, length (as well as write data), to the
persistence layer 330, which records the request in the
persistence layer log 335 and returns an acknowledgement
to the host 120 via the protocol layer 320. The persistence
layer 330 may aggregate and organize write data 414 from
one or more write requests into a new extent 610 and
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perform a hash computation, i.e., a hash function, on the new
extent to generate a hash value 472 in accordance with an
extent hashing technique 450.

The persistence layer 330 may then pass the write request
with aggregated write data including, e.g., the volume 1D,
offset and length, as parameters 434 to the appropriate
volume layer instance. In an embodiment, message passing
of the parameters 434 (received by the persistence layer)
may be redirected to another node via the function shipping
mechanism, e.g., RPC, for inter-node communication. Alter-
natively, message passing of the parameters 434 may be via
the IPC mechanism, e.g., message threads, for intra-node
communication.

In one or more embodiments, a bucket mapping technique
476 is provided that translates the hash value 472 to an
instance of an appropriate extent store layer (i.e., extent store
instance 810) that is responsible for storing the new extent
610. Note, the bucket mapping technique may be imple-
mented in any layer of the storage I/O stack above the extent
store layer. In an embodiment, for example, the bucket
mapping technique may be implemented in the persistence
layer 330, the volume layer 340, or a layer that manages
cluster-wide information, such as a cluster layer (not
shown). Accordingly, the persistence layer 330, the volume
layer 340, or the cluster layer may contain computer execut-
able instructions executed by the CPU 210 to perform
operations that implement the bucket mapping technique
476 described herein. The persistence layer 330 may then
pass the hash value 472 and the new extent 610 to the
appropriate volume layer instance and onto the appropriate
extent store instance via an extent store put operation. The
extent hashing technique 450 may embody an approximately
uniform hash function to ensure that any random extent to be
written may have an approximately equal chance of falling
into any extent store instance 810, i.e., hash buckets are
distributed across extent store instances of the cluster 100
based on available resources. As a result, the bucket map-
ping technique 476 provides load-balancing of write opera-
tions (and, by symmetry, read operations) across nodes 200
of' the cluster, while also leveling flash wear in the SSDs 260
of the cluster.

In response to the put operation, the extent store instance
may process the hash value 472 to perform an extent
metadata selection technique 460 that (i) selects an appro-
priate hash table 480 (e.g., hash table 4804q) from a set of
hash tables (illustratively in-core) within the extent store
instance 810, and (ii) extracts a hash table index 462 from
the hash value 472 to index into the selected hash table and
lookup a table entry having an extent key 475 identifying a
storage location 490 on SSD 260 for the extent. Accordingly,
the extent store layer 350 contains computer executable
instructions executed by the CPU 210 to perform operations
that implement the extent metadata selection technique 460
described herein. If a table entry with a matching extent key
is found, then the SSD location 490 mapped from the extent
key 475 is used to retrieve an existing extent (not shown)
from SSD. The existing extent is then compared with the
new extent 610 to determine whether their data is identical.
If the data is identical, the new extent 610 is already stored
on SSD 260 and a de-duplication opportunity (denoted
de-duplication 452) exists such that there is no need to write
another copy of the data. Accordingly, a reference count in
the table entry for the existing extent is incremented and the
extent key 475 of the existing extent is passed to the
appropriate volume layer instance for storage within an
entry (denoted as volume metadata entry 446) of a dense tree
metadata structure 444 (e.g., dense tree 444a), such that the
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extent key 475 is associated an offset range 440 (e.g., offset
range 440a) of the volume 445.

However, if the data of the existing extent is not identical
to the data of the new extent 610, a collision occurs and a
deterministic algorithm is invoked to sequentially generate
as many new candidate extent keys (not shown) mapping to
the same bucket as needed to either provide de-duplication
452 or to produce an extent key that is not already stored
within the extent store instance. Notably, another hash table
(e.g. hash table 480%) may be selected by a new candidate
extent key in accordance with the extent metadata selection
technique 460. In the event that no de-duplication opportu-
nity exists (i.e., the extent is not already stored) the new
extent 610 is compressed in accordance with compression
technique 454 and passed to the RAID layer 360, which
processes the new extent 610 for storage on SSD 260 within
one or more stripes 710 of RAID group 820. The extent store
instance may cooperate with the RAID layer 360 to identify
a storage segment 650 (i.e., a portion of the storage array
150) and a location on SSD 260 within the segment 650 in
which to store the new extent 610. Illustratively, the iden-
tified storage segment is a segment with a large contiguous
free space having, e.g., location 490 on SSD 2605 for storing
the extent 610.

In an embodiment, the RAID layer 360 then writes the
stripes 710 across the RAID group 820, illustratively as one
or more full stripe writes 458. The RAID layer 360 may
write a series of stripes 710 of sufficient depth to reduce data
relocation that may occur within the flash-based SSDs 260
(i.e., flash block management). The extent store instance
then (i) loads the SSD location 490 of the new extent 610
into the selected hash table 480# (i.e., as selected by the new
candidate extent key), (ii) passes a new extent key (denoted
as extent key 475) to the appropriate volume layer instance
for storage within an entry (also denoted as volume metadata
entry 446) of a dense tree 444 managed by that volume layer
instance, and (iii) records a change to extent metadata of the
selected hash table in the extent store layer log 355. Illus-
tratively, the volume layer instance selects dense tree 444a
spanning an offset range 440a of the volume 445 that
encompasses the offset range of the write request. As noted,
the volume 445 (e.g., an offset space of the volume) is
partitioned into multiple regions (e.g., allotted as disjoint
offset ranges); in an embodiment, each region is represented
by a dense tree 444. The volume layer instance then inserts
the volume metadata entry 446 into the dense tree 444a and
records a change corresponding to the volume metadata
entry in the volume layer log 345. Accordingly, the 1/O
(write) request is sufficiently stored on SSD 260 of the
cluster.

Read Path

FIG. 5 illustrates an I/O (e.g., read) path 500 of the storage
1/0 stack 300 for processing an 1/O request, e.g., a SCSI read
request 510. The read request 510 may be issued by host 120
and received at the protocol layer 320 of a node 200 in the
cluster 100. Illustratively, the protocol layer 320 processes
the read request by decoding 420 (e.g., parsing and extract-
ing) fields of the request, e.g., LUN ID, LBA, and length
(shown at 513), and uses the decoded results 522, e.g., LUN
1D, offset, and length, for the volume mapping technique
430. That is, the protocol layer 320 may implement the
volume mapping technique 430 (described above) to trans-
late the LUN ID and LBA range (i.e., equivalent offset and
length) of the read request to an appropriate volume layer
instance, i.e., volume ID (volume 445), in the cluster 100
that is responsible for managing volume metadata for the
LBA (i.e., offset) range. The protocol layer then passes the
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results 532 to the persistence layer 330, which may search
the write-back cache 380 to determine whether some or all
of the read request can be serviced from its cached data. If
the entire request cannot be serviced from the cached data,
the persistence layer 330 may then pass the remaining
portion of the request including, e.g., the volume 1D, offset
and length, as parameters 534 to the appropriate volume
layer instance in accordance with the function shipping
mechanism (e.g., RPC, for inter-node communication) or the
IPC mechanism (e.g., message threads, for intra-node com-
munication).

The volume layer instance may process the read request
to access a dense tree metadata structure 444 (e.g., dense tree
444aq) associated with a region (e.g., offset range 440qa) of a
volume 445 that encompasses the requested offset range
(specified by parameters 534). The volume layer instance
may further process the read request to search for (lookup)
one or more volume metadata entries 446 of the dense tree
444aq to obtain one or more extent keys 475 associated with
one or more extents 610 (or portions of extents) within the
requested offset range. In an embodiment, each dense tree
444 may be embodied as multiple levels of a search structure
with possibly overlapping offset range entries at each level.
The various levels of the dense tree may have volume
metadata entries 446 for the same offset, in which case, the
higher level has the newer entry and is used to service the
read request. A top level of the dense tree 444 is illustratively
resident in-core and a page cache 448 may be used to access
lower levels of the tree. If the requested range or portion
thereof is not present in the top level, a metadata page
associated with an index entry at the next lower tree level
(not shown) is accessed. The metadata page (i.e., in the page
cache 448) at the next level is then searched to find any
overlapping entries. This process is then iterated until one or
more volume metadata entries 446 of a level are found to
ensure that the extent key(s) 475 for the entire requested read
range are found. If no metadata entries exist for the entire or
portions of the requested range, then the missing portion(s)
are zero filled.

Once found, each extent key 475 is processed by the
volume layer 340 to, e.g., implement the bucket mapping
technique 476 that translates the extent key to an appropriate
extent store instance 810 responsible for storing the
requested extent 610. Note that, in an embodiment, each
extent key 475 may be substantially identical to the hash
value 472 associated with the extent 610, i.e., the hash value
as calculated during the write request for the extent, such
that the bucket mapping 476 and extent metadata selection
460 techniques may be used for both write and read path
operations. Note also that the extent key 475 may be derived
from the hash value 472. The volume layer 340 may then
pass the extent key 475 (i.e., the hash value from a previous
write request for the extent) to the appropriate extent store
instance 810 (via an extent store get operation), which
performs an extent key-to-SSD mapping to determine the
location on SSD 260 for the extent.

In response to the get operation, the extent store instance
may process the extent key 475 (i.e., hash value 472) to
perform the extent metadata selection technique 460 that (i)
selects an appropriate hash table 480 (e.g., hash table 480a)
from a set of hash tables within the extent store instance 810,
and (ii) extracts a hash table index 462 from the extent key
475 (i.e., hash value 472) to index into the selected hash
table and lookup a table entry having a matching extent key
475 that identifies a storage location 490 on SSD 260 for the
extent 610. That is, the SSD location 490 mapped to the
extent key 475 may be used to retrieve the existing extent
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(denoted as extent 610) from SSD 260 (e.g., SSD 2605). The
extent store instance then cooperates with the RAID layer
360 to access the extent on SSD 2604 and retrieve the data
contents in accordance with the read request. Illustratively,
the RAID layer 360 may read the extent in accordance with
an extent read operation 468 and pass the extent 610 to the
extent store instance. The extent store instance may then
decompress the extent 610 in accordance with a decompres-
sion technique 456, although it will be understood to those
skilled in the art that decompression can be performed at any
layer of the storage 1/O stack 300. The extent 610 may be
stored in a buffer (not shown) in memory 220 and a
reference to that buffer may be passed back through the
layers of the storage 1/O stack. The persistence layer may
then load the extent into a read cache 580 (or other staging
mechanism) and may extract appropriate read data 512 from
the read cache 580 for the LBA range of the read request
510. Thereafter, the protocol layer 320 may create a SCSI
read response 514, including the read data 512, and return
the read response to the host 120.

Layered File System

The embodiments described herein illustratively employ a
layered file system of the storage 1/O stack. The layered file
system includes a flash-optimized, log-structured layer (i.e.,
extent store layer) of the file system configured to provide
sequential storage of data and metadata (i.e., log-structured
layout) on the SSDs 260 of the cluster. The data may be
organized as an arbitrary number of variable-length extents
of one or more host-visible LUNs served by the nodes. The
metadata may include mappings from host-visible logical
block address ranges (i.e., offset ranges) of a LUN to extent
keys, as well as mappings of the extent keys to SSD storage
locations of the extents. [llustratively, the volume layer of
the layered file system cooperates with the extent store layer
to provide a level of indirection that facilitates efficient
log-structured layout of extents on the SSDs by the extent
store layer.

In an embodiment, functions of the log-structured layer of
the file system, such as write allocation and flash device (i.e.,
SSD) management, are performed and maintained by the
extent store layer 350. Write allocation may include gath-
ering of the variable-length extents to form full stripes that
may be written to free segments across SSDs of one or more
RAID groups, whereas flash device management may
include segment cleaning to create such free segments that
indirectly map to the SSDs. Instead of relying on garbage
collection in the SSDs, the storage 1/O stack may implement
segment cleaning (i.e., garbage collection) in the extent store
layer to bypass performance impacts of flash translation
layer (FTL) functionality (including garbage collection) in
the SSD. In other words, the storage I/O stack allows the
log-structured layer of the file system to operate as a data
layout engine using segment cleaning to effectively replace
the FTL functionality of the SSD. The extent store layer
may, thus, process random write requests in accordance with
segment cleaning (i.e., garbage collection) to predict flash
behavior within its FTL functionality. As a result, a log-
structured equivalent source of write amplification for the
storage [/O stack may be consolidated and managed at the
extent store layer. In addition, the log-structured layer of the
file system may be employed, in part, to improve write
performance from the flash devices of the storage array.

Segment Cleaning

FIG. 6 illustrates segment cleaning by the layered file
system. In an embodiment, the extent store layer 350 of the
layered file system may write extents to an empty or free
region or “segment.” Before rewriting that segment again,
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the extent store layer 350 may clean the segment in accor-
dance with segment cleaning which, illustratively, may be
embodied as a segment cleaning process. The segment
cleaning process may read all valid extents 610 from an old
segment 650a and write those valid extents (i.e., extents not
deleted or overwritten 612) to one or more new segments
6506-c, to thereby free-up (i.e., “clean”) the old segment
650a. New extents may then be written sequentially to the
old (now clean) segment. The layered file system may
maintain a certain amount of reserve space (i.e., free seg-
ments) to enable efficient performance of segment cleaning.
For example, the layered file system may illustratively
maintain a reserve space of free segments equivalent to
approximately 7% of storage capacity. The sequential writ-
ing of new extents may manifest as full stripe writes 458,
such that a single write operation to storage spans all SSDs
in a RAID group 820. Write data may be accumulated until
a stripe write operation of a minimum depth can be made.

Tlustratively, segment cleaning may be performed to free
one or more selected segments that indirectly map to SSDs.
As used herein, a SSD may be composed of a plurality of
segment chunks 620, wherein each chunk is illustratively
approximately 1 GB in size. A segment may include a
segment chunk 620a-c from each of a plurality of SSDs in
a RAID group 820. Thus, for a RAID group having 24 SSDs,
wherein 22 SSDs store data (data SSDs) and 2 SSDs store
parity (parity SSDs), each segment may include 22 GB of
data and 2 GB of parity. The RAID layer may further
configure the RAID groups according to one or more RAID
implementations, e.g., RAID 1, 4, 5 and/or 6, to thereby
provide protection over the SSDs in the event of, e.g., failure
to one or more SSDs. Notably, each segment may be
associated with a different RAID group and, thus, may have
a different RAID configuration, i.e., each RAID group may
be configured according to a different RAID implementa-
tion. To free-up or clean selected segments, extents of the
segments that contain valid data are moved to different clean
segments and the selected segments (now clean) are freed
for subsequent reuse. Segment cleaning consolidates frag-
mented free space to improve write efficiency, e.g., to
underlying flash blocks by reducing performance impacts of
the FTL. Once a segment is cleaned and designated freed,
data may be written sequentially to that segment. Account-
ing structures, e.g., free segment maps or an amount of
segment free space, maintained by the extent store layer for
write allocation, may be employed by the segment cleaning
process. Notably, selection of a clean segment to receive
data (i.e., writes) from a segment being cleaned may be
based upon the amount of free space remaining in the clean
segment and/or the last time the clean segment was used.
Note further that different portions of data from the segment
being cleaned may be moved to different “target” segments.
That is, a plurality of relatively clean segments 6505,¢ may
receive differing portions of data from the segment 650a
being cleaned, i.e., illustratively extent 610a is moved to
segment 6505 and extent 6105 is moved to segment 650c.

Write Allocation

In an embodiment, there may be multiple RAID stripes
per segment. Each time a segment is allocated, i.e., after
cleaning the segment, the chunks of various SSDs within the
segment may include a series of RAID stripes, each aligned
by extent. The chunks may be at the same or different offsets
within the SSDs. The extent store layer may read the chunks
sequentially for cleaning purposes and relocate all the valid
data to another segment. Thereafter, the chunks 620 of the
cleaned segment may be freed and a decision may be
rendered as to how to constitute the next segment that uses
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the chunks. For example, if a SSD is removed from a RAID
group, a portion (i.e., a set of chunks 620) of capacity may
be omitted from the next segment (i.e., change in RAID
stripe configuration) so as to constitute the RAID group
from a plurality of chunks 620 that is one chunk narrower,
i.e., making the RAID width one less. Thus, by using
segment cleaning, a RAID group of the chunks 620 consti-
tuting the segments may be effectively created each time a
new segment is allocated, i.e.,, a RAID group is created
dynamically from available SSDs when a new segment is
allocated. There is generally no requirement to include all of
the SSDs 260 in the storage array 150 in the new segment.
Alternatively, a chunk 620 from a newly introduced SSD can
be added into a RAID group created when a new segment
650 is allocated.

FIG. 7a illustrates a RAID stripe formed by the layered
file system. As noted, write allocation may include gathering
of the variable-length extents to form one or more stripes
across SSDs of one or more RAID groups. In an embodi-
ment, the RAID layer 360 may manage parity computations
and topology information used for placement of the extents
610 on the SSDs 260a-7 of the RAID group 820. To that end,
the RAID layer may cooperate with the extent store layer to
organize the extents as stripes 710 within the RAID group.
Ilustratively, the extent store layer may gather the extents
610 to form one or more full stripes 710 that may be written
to a free segment 650a such that a single stripe write
operation 458 may span all SSDs in that RAID group. The
extent store layer may also cooperate with the RAID layer
to pack each stripe 710 as a full stripe of variable-length
extents 610. Once the stripe is complete, the RAID layer
may pass the full stripe 710 of extents as a set of chunks
620d-f to the storage layer 365 of the storage 1/O stack for
storage on the SSDs 260. Each chunk may include a RAID
header 860 and each SSD may include one or more disk
labels 850a-n, which together facilitate lost write detection
as described herein. By writing a full stripe (i.e., data and
parity) to the free segment, the layered file system avoids the
cost of parity updates and spreads any required read opera-
tion load across the SSDs.

In an embodiment, an extent store may be viewed as a
global pool of extents stored on the storage arrays 150 of the
cluster, where each extent may be maintained within a RAID
group 820 of the extent store. Assume one or more variable-
length (i.e., small and/or large) extents are written to a
segment. The extent store layer may gather the variable-
length extents to form one or more stripes across the SSDs
of the RAID group. Although each stripe may include
multiple extents 610 and an extent 6105 could span more
than one stripe 710a,b, each extent is entirely stored on one
SSD. In an embodiment, a stripe may have a depth of 16 KB
and an extent may have a size of 4 KB, but the extent may
thereafter be compressed down to 1 or 2 KB or smaller
permitting a larger extent to be packed which may exceed
the stripe depth (i.e., the chunk 620g depth). Thus, a stripe
may constitute only part of the extent, so the depth of the
stripe 710 (i.e., the set of chunks 620d-f constituting the
stripe) may be independent of the extent(s) written to any
one SSD. Since the extent store layer may write the extents
as full stripes across one or more free segments of the SSDs,
write amplification associated with processing information
of the stripes may be reduced.

FIG. 7b illustrates changes to a segment-based RAID
configuration in accordance with changes to the storage pool
of the cluster. [llustratively, a plurality of segments 650a,5
is associated with a RAID group 820a having a set of SSDs
260a-n. A new (i.e., additional or replacement) SSD 2607+1
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may be added to the storage array such that existing seg-
ments 650a,b include SSDs 260a-7, while a new segment
650c includes SSDs 260a-» in addition to SSD 260n+1. As
the segments 650a,b are cleaned, data is written (i.e.,
moved) from those segments to the segment 650c. A new
RAID group 8205 may be created once new segment 650¢
is allocated. The layered file system may then write extents
to the new segment 650c¢ with the additional capacity
available for immediate use either to recover from a
degraded level of redundancy or to store additional data.

RAID Group Slices

The embodiments described herein are directed to a RAID
organization of storage containers and RAID groups of a
cluster configured to reduce parity overhead of the RAID
groups, as well as facilitate distribution and servicing of the
storage containers among nodes of the cluster. The RAID
organization may be configured to identify the SSDs, which
may be organized as one or more RAID groups (i.e.,
aggregates) associated with an extent store. As used herein,
an extent store is illustratively a storage container stored on
one or more SSDs of the storage arrays. Notably, the RAID
groups may be formed from slices (i.e., portions) of storage
spaces of the SSDs instead of the entire storage spaces of the
SSDs. That is, each RAID group may be formed “horizon-
tally” across a set of SSDs as slices (i.e., one slice of storage
space from each SSD in the set). Accordingly, a plurality of
RAID groups may co-exist (i.e., be stacked) on the same set
of' SSDs, such that each RAID group allotted from the set of
SSDs may have a similar parity ratio. Because the same set
of SSDs houses each RAID group allotted as slices across
the set of SSDs, there is no increase in the parity ratio. Each
RAID group may still employ a different level of redun-
dancy (e.g., RAID 6 or RAID 5), so that one RAID group
may have a different parity ratio from another. That is, each
segment within the RAID group may have a different parity
distribution and/or an amount of parity overhead. In this
manner, differing parity ratios as well as parity distributions
may occur segment-by-segment.

In an embodiment, each extent store includes segments
horizontally spanning a RAID group, wherein each segment
represents a unit of redundancy within the RAID group. That
is, parity and data may be arranged on a segment-by-
segment basis according to the RAID configuration of the
segment supported by the underlying RAID group. Each
segment within the same RAID group may thus have
different parity distribution and/or amount of parity over-
head. For example, one segment may use a slice on a first
SSD for parity, whereas another segment may use a slice on
a second SSD for parity. In addition, one segment may use
single parity protection (e.g., RAID 5) and another segment
may use double parity protection (e.g., RAID 6). It should be
noted that each segment may be associated with a separate
(or the same) RAID group, and that each extent store may
be associated with a plurality of RAID groups.

FIG. 7c¢ illustrates RAID group slices. In an embodiment,
a RAID group 820 may be formed from slices 830 allotted
across SSDs 260. For example, SSD 260a may be divided
into a plurality of slices 830a-c, each of which may be
respectively allotted to a RAID group 820d-f. The slices 830
allotted to a RAID group may illustratively be at the same
location on each SSD (i.e., “horizontal”). Alternatively, a
RAID group (e.g., RAID group 820¢) may be formed from
slices (e.g., slices 830b,¢,h,k) at different locations on the
respective SSDs (e.g., SSDs 260a-#). Each slice 830 may
include an equal amount of storage space from each SSD
260 of a set of SSDs allocated to a RAID group. For
instance, 100 gigabyte slices may be allotted from each of
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twenty-two 500 GB SSDs to form a 2.2 terabyte RAID
group having a 22+2 RAID configuration. In an embodi-
ment, each slice 830 may also include a disk label 850 so
that each slice may be separately managed (i.e., associated
with a different extent store). Notably, each RAID group
allocated from the set of SSDs may have the same parity
ratio, e.g., 2/24=8.3% for the 22+2 RAID configuration.
Segments 650 may remain as the unit of redundancy within
each respective RAID group, as illustrated for segments
650d-¢ within RAID group 820d. That is, the extent stores
may be each composed of segments spanning the RAID
group, wherein the segments represent the unit of redun-
dancy within the RAID group.

In an embodiment, the SSDs may be configured with
multi-host access (i.e., multi-stream) capability to thereby
enable more than one extent store to coexist on the same set
of SSDs. That is, the multi-stream capability of the SSDs
260 may allow an extent store on a first RAID group 8204
to be efficiently serviced by one node, while another extent
store on a second RAID group 820e may be serviced by
another node. Thus, different nodes may access different
RAID groups on the same SSD as if they were independent.
In this manner, extent stores may share SSDs, but those
extent stores may be serviced by different nodes of the
cluster.

In an embodiment, each SSD may be part of a RAID
configuration topology tree structure that defines an extent
store using a multi-level hierarchy (e.g., four levels),
wherein a first level of the tree identifies SSDs of a set of
SSDs, a second level of the tree identifies a slice of the SSD
allotted to a RAID group (one from each SSD in the set), a
third level identifies the RAID group to which the SSD
belongs, and a fourth level identifies an extent store to which
the RAID group belongs. FIG. 8A illustrates a RAID con-
figuration topology tree structure 800. An extent store 805
may include one or more RAID groups 820a-n, each of
which may include a plurality of slices 830 allotted from one
or more SSDs 260, which may be grouped into sets 840.
Note that the contents of the disk label 850 may be used to
construct the RAID configuration topology tree structure.
Tlustratively, two or more RAID groups 8205,7» may share
the same set 840a of SSDs. Also, each RAID group may be
associated with at least one segment of the extent store. That
is, a plurality of segments 650 may be associated with the
same RAID group 820, so that RAID groups may vary by
segment (or remain the same), i.e., segment-based RAID
configuration. Accordingly, SSDs of the storage array are
assimilated into RAID groups by segment.

As noted, RAID groups may illustratively be created
when segments are allocated. Further, each segment may be
associated with a separate RAID group, so that an extent
store may be associated with a plurality of RAID groups,
and more than one extent store may coexist on the same set
of SSDs. Accordingly, a set of SSDs of the storage array may
include a plurality of extent stores, each having a plurality
of segments and wherein each segment may be stored on a
different RAID group formed from slices across the set of
the SSDs.

Lost Write Detection

In an embodiment, write operations resulting in incom-
plete or corrupt data stored to media of an SSD (i.e., lost
write) may be detected by comparing a generation identifier
of'a segment 650 having the lost write data with an identifier
in a RAID header 860 associated with the lost write data. A
lost write may be detected when the comparison of the
identifiers results in a mismatch. [llustratively, the disk label



US 9,483,349 B2

17

850 is used to store the segment generation identifier and the
RAID header 860 is used to store the identifier associated
with the lost write data.

FIG. 8b illustrates data structures for a disk label 850 and
a RAID block header 860. The disk label 850 may include
a set of segment labels 852a-n each associated with a
segment of the extent store. In turn, each segment label may
include a segment generation identifier (ID) 853. The seg-
ment generation IDs 853a-» may be monotonically increas-
ing numbers (e.g., 32-bit, 64-bit and 128-bit integers)
assigned when a segment is created. Alternatively, each
segment generation ID may be a unique identifier. In an
embodiment, the disk label 850 also includes a set of RAID
group labels 854a-n, each associated with a RAID group.
Iustratively, the RAID group labels may be used to con-
struct the RAID configuration topology tree structure 800
in-core (i.e., in memory 220). To that end, each RAID group
label 854 may include an array of segment pointers 855,
which reference a set of segment labels 852 such that a
RAID group 820a represented by the RAID group label
854a may be associated with the set of segments 650
represented by the set of segment labels 852 (as referenced
by the segment pointer array 855q). In addition, each RAID
group label 854 may include a set of slice labels 856, each
of which has an SSD identifier 857 indicating the SSD 260
storing a slice 830 represented by the slice label 856.

As previously mentioned, each chunk 620 may include a
RAID header 860. Illustratively the RAID header 860
includes a RAID generation identifier (ID) 862 provided to
identify the segment (i.e., segment generation ID) having the
chunk 620; a RAID header checksum 864 provided to
ensure that the RAID header metadata information (e.g.,
RAID generation 1D) is stored without error; and a RAID
chunk checksum 866 provided to ensure the integrity of the
entire chunk 620.

FIG. 8¢ is an example simplified procedure for lost write
detection in accordance with one or more embodiments
described herein. The procedure 880 starts at step 881 and
continues to step 883 where the disk label may be read from
SSD. At step 885, a current segment may be identified from
the segment labels of the disk label using the segment
generation ID. At step 887, a RAID header may be read for
a chunk on SSD from the current segment. At step 888, a
determination may be made whether the RAID generation
ID of the RAID header matches (e.g., is identical to) the
segment generation ID. If the identifiers are not identical,
then a lost write recovery procedure 890 may be executed,
otherwise the lost write detection procedure 880 ends (stops)
at step 889. In an embodiment, the lost recovery procedure
890 may include recovery of one or more extents included
in the chunk found to have a lost write operation. In other
embodiments, one or more extents included in the chunk
having lost write data may be deleted with notification to an
administrator of the storage cluster. In yet another embodi-
ment, the administrator may be notified with no change to
the chunk.

Failover Distribution of Extent Stores

In response to failure of a node, servicing (i.e., ownership)
of the failed node’s extent stores may be distributed to
remaining (i.e., surviving) nodes of the cluster, wherein an
extent store instance is the unit of failover. FIG. 9 illustrates
a failover of extent store instances. [llustratively, a four-node
cluster includes extent stores (as manifested by extent store
instances 810a-f) that are distributed among the nodes of the
cluster. In response to a failure of node 2004, all surviving
nodes 200q,c,d (of a quorum) may attempt to read RAID
configuration information stored on the SSDs of the failed
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node (i.e., SSDs associated with the extent stores served by
the failed node 2005 via extent store instances 810¢,f), so as
to assimilate (i.e., organize) those SSDs into, e.g., one or
more RAID groups to thereby enable continuous servicing
of the extent stores. After assimilation, a determination may
be rendered, e.g., in accordance with an ownership transfer
technique, as to the owner of each extent store (i.e., the node
determined to service the extent store using an extent store
instance). As a result of the technique, the determination
may specify that ownership of extent stores of the failed
node 2005 is assumed by nodes 200¢,d. To that end, extent
store instances 810e,f are “transferred” to nodes 200c,d of
the cluster. For example, extent store instance 810f may be
transferred to node 200¢ and extent store instance 810e may
be transferred to node 2004, such that the nodes 200¢,d may
service the extent stores via instances 810e,f, respectively.
Note that the contents of extent store(s) remain unaffected;
it is the servicing of the extent store(s) via the extent store
instances that are failed-over. Accordingly, extent stores may
not share RAID groups to allow their transfer to any node in
the cluster. That is, every RAID group associated with an
extent store instance fails over alongside the extent store
instance, so that the RAID group is transferred to the same
node as the extent store instance. In this manner ownership
of the extent store includes ownership of the RAID group(s)
underlying the extent store.

In an embodiment, servicing of the failed node’s extent
stores may be distributed evenly (i.e., load balanced) to the
surviving nodes. Thus, for a cluster of N nodes, extent stores
may be evenly distributed among N-1 surviving nodes,
wherein each node may have a multiple of N-1, ie.,
m-(N-1), extent stores so that m extent stores may be
distributed to each of the N-1 surviving nodes. FIGS. 10a
and 105 illustrate failover distribution of extent store
instances in a three- and four-node clusters respectively.
Tlustratively, in a three-node cluster, each of two extent
store instances of a failed node 200 is distributed to each of
two surviving nodes. Likewise, illustratively in a four-node
cluster, each of three extent store instances of a failed node
is distributed to each of three surviving nodes so that the
load (i.e., servicing of the extent store instances) on the
surviving nodes of the cluster is balanced.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that
the components and/or elements described herein can be
implemented as software encoded on a tangible (non-tran-
sitory) computer-readable medium (e.g., disks and/or CDs)
having program instructions executing on a computer, hard-
ware, firmware, or a combination thereof. Accordingly this
description is to be taken only by way of example and not
to otherwise limit the scope of the embodiments herein.
Therefore, it is the object of the appended claims to cover all
such variations and modifications as come within the true
spirit and scope of the embodiments herein.

What is claimed is:

1. A system comprising:

a central processing unit (CPU) of a node of a cluster

having a plurality of nodes;

one or more storage arrays of solid state drives (SSDs)

coupled to the node; and

a memory coupled to the CPU and configured to store a

storage input/output (I/O) stack having a redundant
array of independent disks (RAID) layer executable by
the CPU, the RAID layer configured to organize the
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SSDs within the one or more storage arrays as a
plurality of RAID groups associated with one or more
extent stores, the RAID groups formed from slices of
storage spaces of the SSDs instead of entire storage
spaces of the SSDs, such that RAID groups co-exist on
a same set of the SSDs, the one or more extent stores
including segments spanning a RAID group, and
wherein each segment within the RAID group repre-
sents a unit of redundancy with at least one of different
parity distribution and amount of parity overhead.

2. The system of claim 1 wherein different nodes of the
cluster access different RAID groups on the same set of the
SSDs.

3. The system of claim 1 wherein the SSDs are configured
with multi-stream access capability to enable the one or
more extent stores to co-exist on the same set of SSDs.

4. The system of claim 3 wherein the multi-stream access
capability allows a first node of the cluster to service a first
extent store on a first RAID group and a second node of the
cluster to service a second extent store on a second RAID
group.

5. The system of claim 1 wherein each segment is
associated with a separate RAID group.

6. The system of claim 1 wherein parity and data are
arranged on a segment-by-segment basis according to a
RAID configuration of the segment supported by the RAID
group.

7. The system of claim 1 wherein a first segment uses a
first slice on a first SSD for parity and a second segment uses
a second slice on a second SSD for the parity.

8. The system of claim 1 wherein a first segment uses
single parity protection and a second segment uses double
parity protection.

9. A method comprising:

executing, by a node of a cluster having a plurality of

nodes, a storage input/output (I/O) stack having a
redundant array of independent disks (RAID) layer,
organizing, by the RAID layer, solid state drives (SSDs)

within one or more storage arrays as a plurality of
RAID groups associated with one or more extent
stores; and

forming the RAID groups from slices of storage spaces of

the SSDs instead of entire storage spaces of the SSDs,
such that RAID groups co-exist on a same set of the
SSDs, the one or more extent stores including segments
spanning a RAID group, and wherein each segment
within the RAID group represents a unit of redundancy
with at least one of different parity distribution and
amount of parity overhead.
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10. The method of claim 9 further comprising:
accessing, by different nodes of the cluster, different
RAID groups on the same set of the SSDs.

11. The method of claim 9 further comprising:

configuring the SSDs with multi-stream access capability

to enable the one or more extent stores to co-exist on
the same set of SSDs.

12. The method of claim 11 further comprising:

using the multi-stream access capability to have a first

node of the cluster service a first extent store on a first
RAID group and a second node of the cluster to service
a second extent store on a second RAID group.

13. The method of claim 9 further comprising:

associating each segment with a separate RAID group.

14. The method of claim 9 further comprising:

arranging parity and data on a segment-by-segment basis

according to a RAID configuration of the segment
supported by the RAID group.

15. The method of claim 9 further comprising:

using a first slice on a first SSD for parity for a first

segment; and

using a second slice on a second SSD for the parity for a

second segment.

16. The system of claim 1 wherein the RAID group is
formed from a slice of storage spaces having different
locations on at least two of the SSDs.

17. The system of claim 1 wherein the RAID group is
formed from a slice of storage spaces having a same location
on at least two of the SSDs.

18. The method of claim 9 further comprising:

forming the RAID group from a slice of storage spaces

having different locations on at least two of the SSDs.

19. The method of claim 9 further comprising:

forming the RAID group from a slice of storage spaces

having a same location on at least two of the SSDs.

20. A non-transitory computer readable medium having
executable program instructions when executed by a pro-
cessor operable to:

organize solid state drives (SSDs) within one or more

storage arrays coupled to the processor as a plurality of
RAID groups associated with one or more extent
stores; and

form the RAID groups from slices of storage spaces of the

SSDs instead of entire storage spaces of the SSDs, such
that RAID groups co-exist on a same set of the SSDs,
the one or more extent stores including segments
spanning a RAID group, and wherein each segment
within the RAID group represents a unit of redundancy
with at least one of different parity distribution and
amount of parity overhead.
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